Running head: NEURAL NETWORK

Using a Feed Forward Neural Network to Computationally Predict 105mm Lag and
Depression Angle Errors on Side Firing Gunships

Albert Young III

UNCLASSIFIED

NEURAL NETWORK 2

Abstract

This paper covers the development of a feed forward neural network trained to make
predictions of the nominal lag and depression angles of the 105mm Howitzer on side-firing
gunships over time. This tool is presented as a novel way of maintaining and updating gun
errors induced by misalignments in gun/aircraft reference frames. A background is given on
the implementation of the neural network, using the modern machine learning framework

Tensorflow, as well as the process of training the network, and the model’s accuracy.

UNCLASSIFIED

NEURAL NETWORK 3

Using a Feed Forward Neural Network to Computationally Predict 105mm Lag and

Depression Angle Errors on Side Firing Gunships
Introduction

Being able to accurately engage an enemy target within close proximity of friendly
forces, from thousands of feet away, with a non-guided munition is the expertise of side
firing gunships. Any procedure or technique which could enhance the accuracy of a
gunship’s munitions would be a valued addition to the communities knowledge, and has the
potential to save lives. To this end, this paper presents a machine learning algorithm
capable of predicting corrections to the lag and depression angles of the 105mm Howitzer.
These corrections are learned over time, and applied after several inputs into the system.
Similar to manual procedure known as a tweak, this automatic learning algorithm has the
potential to be able to simultaneously correct wind and gun errors, while maintaining a
"memory" of previous inputs. The technique presented here is also amicable to other
caliber projectile weapons, and to correcting sensor and inertial navigation unit

discrepancies with the proper tooling.
Neural Networks

The field of machine learning has grown exponentially in the past twenty years. This
field is dedicated to uprooting the traditional notion of programming a computer line by
line. Instead of telling a computer how to solve a problem, a computer is presented with
observational data and it computes how to solve it on its own. While computer learning
has been a holy grail of sorts in the computer industry, it was not until Rumelhart, Hinton,
and Williams (1986) published a seminal paper on a new algorithm that the field began to
grow. During the last decade, thanks to the effects of large scale corporations and
globalization, the amount of information available has grown faster than the speed of
processors. The ability to train computers to work on data-sets and deduce patterns is
vitally important to a variety of industries, and it’s being deployed on a large scale by

companies such as Google, Microsoft, and Facebook.

UNCLASSIFIED

NEURAL NETWORK 4

_ weights
Inputs
Xj
activation
functon
X @ net input
- net.
J)
> QY —9
X @ activation
3
transfer
. function

6.

J
threshold

Figure 1. Overview of a single neuron in a neural network (Commons, 2016a)

The basic building block of a neural network is a neuron, depicted in Figure 1. A
neuron consists of any number of inputs, weights to be applied to those inputs, a
summation function, and an activation function. Both the inputs and outputs of a neuron
can be densely or sparely connected to other neurons, building a neural network (Figure 2).
The activation function can be selected at will, and different activation functions are better

at different tasks. For this model, the sigmoid (1) and tanh (2) functions were selected.

. . 1
Sigmoid(t) = T (1)
2
Tanh(t) = T 1 (2)

Rumelhart et al. (1986)’s breakthrough was that these functions are fully
differentiable, and that can be used to modify the weights of each neuron. After training
data has been supplied, the network will output a value. That value can be compared
against a known value for the given inputs and an error can be assigned. By using the

chain rule, that error can be back-propagated through the network to correct weights of

UNCLASSIFIED

NEURAL NETWORK 5

each neuron (Bengio & Courville, 2016). Through a multitude of iterations of this process,
the network will learn the proper output for a given input, even if it has not seen that

input before.

Hidden
Input

." O }Output

>

Figure 2. A fully connected neural network (Commons, 2016b)

Ballistic Modeling

The topic of exterior ballistics, or the effects after a projectile has left the barrel of
the weapon, has been studied in depth for over one hundred years. McCoy (2012) dedicates

the second chapter of his book to the mathematics behind the trajectory of a bullet in this

UNCLASSIFIED

NEURAL NETWORK 6

state. Most of the work studied assumes the weapon is fired either from a horizontal
position, or into the air. There is few public works concerning the effects of firing a
projectile from the attitudes required for side firing aircraft. The Aircrew Weapons
Delivery Manual for the AC-130U describes the general algorithm it uses to compute the
lag and depression angles, but without access to the proprietary code base owned by
Boeing, there is no way to re-implement the procedure (United States Air Force, 2009). To
complete the training of the neural network, a proper ballistic model needed to be
developed from scratch.

Instead of using the china-lake algorithm, a iterative method has been developed. The

ballistic model presented in appendix B can be summarized by the following procedure:
1. Nominal Parameters Entered From Ballistic Database
2. Calculate Gun Pointing Vector
3. Generate a Bullet Object

4. While Bullet’s Z Value is Above Zero:

1. Calculate the Speed of Sound Based on Altitude and Temperature
2. Calculate Bullet Drag Vector Over Time Iteration
3. Apply Gravity and Drag to Bullet Over Time Iteration

4. Return New Bullet to Next Iteration

Tensorflow

Tensorflow is a programming system in which computations are composed of graphs,
which can be distributed over many computer systems (Abadi et al., 2015). It is
specifically designed for machine learning and can compute the derivative of its built in
neural network components. This greatly simplifies the construction of neural networks.

The network used in this paper is composed of one input layer, two hidden layers
consisting of 256 neurons each, and one output layer. Tensorflow allows the construction of

the network through a series of procedural statements.

UNCLASSIFIED

NEURAL NETWORK 7

Methods

To complete training of the neural network, a data set was prepared using the
ballistic model previously described. The data set consists of lag and depression angles

with random errors added for a given set of nominals, as demonstrated in Table 1.

Generated Input | Actual Values | Expected Outcome

Lag Dep Lag Dep Lag Dep
-222 -400 -220 -410 2 10

Table 1

Example of Generated Sample Data

Once this data is generated, it can be feed into the learning algorithm presented in
appendix C. This algorithm outputs corrected nominal lag and depression angles. The
critical competent to the learning algorithm is the application of the proper cost function.
This function informs the network of the error between the predicted and the actual values
of the training data. Several standard functions were attempted, but a custom function

similar to the least mean squares function allowed the network to train the fastest.
Results

The neural network presented can achieve greater than 99.9 percent accuracy in
predicting error corrections for a given set of learned lag and depression angles, as shown in
Figure 3a and 3b. Note that the axis are scaled values, as the neural network only accepts
values from zero to one. A scaling function is included in Appendix C.

The network was trained over 5000 iterations, and achieved the accuracy in less than
three minutes on a low end laptop. The testing data shown in Figure 3a was never seen by
the neural net, as the traing set was completely different from the testing set. This shows

that the network could be trained in real time, with new values being added every flight.

UNCLASSIFIED

NEURAL NETWORK 8

Conclusions

This paper has presented a method of predicting lag and depression angle errors on
side firing gunships using feed forward neural networks. The method is complimentary to
the existing methods used in operational gunships, with the added benefit of being able to
"remember" correction values for a giving situation. This method does require a
considerable larger amount of computing power than the current U-model gunship’s
mission computers can handle, a modest workstation laptop with only one dedicated
graphical processing unit could speed up performance by 55%.

This work was conducted to show the viability of utilizing machine learning
algorithms in side firing gunship applications, thus a relativity simple task was selected.
This work can be expanded to not only automatically correct lag and depression angles,
but to also correct for wind error. Work has already been started on accomplishing this
goal. Also, the use of feed forward neural networks could be applied to sensor/gun

reference frame corrections.

UNCLASSIFIED

NEURAL NETWORK

1.2 T T T T T
1.0+ ° o e ? o ° 8
° L .
[] L]
e e oo
g 0.8 | . o® -' e . -
= o °
s 06 . . .]
] ° ™
o []
a e o ° Ha e °) ® e
- 041 e *.* |
}J_,L-: o o0
E e ®® e L] °
& 02} * W o ¢ o |
o s @ ® LI o .
[] L]
*” ® [] e ° L]
0.0} .o |
[]
_02 I I I I I I
-0.2 0.0 0.2 0.4 0.6 0.8 1.0 1.2
Predicted Lag Corrections
(a) The Output of the Fully Trained neural network
1.2 ; ; ; T T
1.0} ° . ® . |
[] L]
L] [] ... L] *
0.8 - e o ° e o oo "3 .
2 e ® o o ° ° °
9 ° L] L] []
Ji:; .. e L]
2 06 * . .]
s .. L]
o L] a0 []
% [] a0 b e e L]
] 0.4 | e ® L] ® .° .
E ° ° o e **
v (1]]]
< 02} * |
L] [] e []
e .. L] ® e [] []
0.0} ° e o ¢« o s ° -
_02 I 1 1 1 1 1
-0.2 0.0 0.2 0.4 0.6 0.8 1.0 12

Actual Lag Corrections

(b) The Desired Output

Figure 3. Results

UNCLASSIFIED

NEURAL NETWORK 10

References

Abadi, M., Agarwal, A., Barham, P., Brevdo, E., Chen, Z., Citro, C., ... Zheng, X. (2015).
TensorFlow: Large-scale machine learning on heterogeneous systems. Retrieved from
http://tensorflow.org/ (Software available from tensorflow.org)

Bengio, I. G. Y., & Courville, A. (2016). Deep learning. Retrieved from
http://www.deeplearningbook.org (Book in preparation for MIT Press)

Commons, W. (2016a). Artificialneuronmodel. Retrieved from
\url{https://upload.wikimedia.org/wikipedia/commons/thumb/6/
60ArtificialNeuronModel_english.png/
600px-ArtificialNeuronModel_english.png} ([Online; accessed July 1, 2016])

Commons, W. (2016b). Artificialneuronmodel. Retrieved from
\url{https://commons.wikimedia.org/w/index.php?curid=1496812} ([Online;
accessed July 1, 2016])

McCoy, R. L. (2012). Modern exterior ballistics: the launch and flight dynamics of
symmetric projectiles. Schiffer Pub.

Rumelhart, D. E., Hinton, G. E., & Williams, R. J. (1986, Oct 09). Learning
representations by back-propagating errors. Nature, 323(6088), 533-536. Retrieved
from http://dx.doi.org/10.1038/323533a0 doi: 10.1038/323533a0

United States Air Force. (2009). To 1c¢-130(a)u-34-cd-1. United States Department of the

Air Force. (Aircrew Weapons Delivery Manual Nonnuclear)

UNCLASSIFIED

NEURAL NETWORK 11

Appendix A
Copyright of Included Software
Because of the closed down nature of the current military procurement of software, and the
negative effects it has on the operators who actually use said software, the following is
released under the GNU Public License.

This program is free software: you can redistribute it and/or modify it under the
terms of the GNU General Public License as published by the Free Software Foundation,
either version 3 of the License, or (at your option) any later version.

This program is distributed in the hope that it will be useful, but WITHOUT ANY
WARRANTY; without even the implied warranty of MERCHANTABILITY or FITNESS
FOR A PARTICULAR PURPOSE. See the GNU General Public License for more details.

You should have received a copy of the GNU General Public License along with this

program. If not, see http://www.gnu.org/licenses/.

UNCLASSIFIED

NEURAL NETWORK

Appendix B
Ballistic Modeling Code

import Vector3d

import math

from mpl_ toolkits. mplot3d import Axes3D

import matplotlib.pyplot as plt

vec = Vector3d. Vector3D

projArea = 0.00864286
initall05Velocity = 1620.0

def rad2deg(rad):

return math.degrees(rad)

def deg2rad(deg):

return math.radians (deg)

def k2c(k):

return k — 273.15

def c2k(c):

UNCLASSIFIED

12

NEURAL NETWORK

def

def

def

def

def

def

return ¢ + 273.15

feet2meters (feet):

return feet * 0.3048

meters2feet (meters):

return meters * 3.28084

feet2knot (feet):

return feet * 0.000164579

knot2feet (knot):

return knot * 6076.12

knot2meters (knot) :

return knot * 1852.0

meters2knots (meters):

return meters * 0.000539957

UNCLASSIFIED

13

NEURAL NETWORK

def

def

def

def

def

def

def

kph2kps (kph) :

return (kph / (60.0 % 60.0))

pound2kg (pound) :

return pound *x 0.453592

deg2mil (deg) :

return deg % 17.778

mil2deg (mil) :

return mil / 17.778

mil2rad (mil):

return deg2rad(mil2deg(

mils2deg (mils):

return mils / 1000.0

rad2mils(rad):

return rad * 1000.0

mil))

UNCLASSIFIED

NEURAL NETWORK 15

def tempAtAltitudeSI(meters):
Calculate the temp at altitude in SI units, input meters
L = temp laps rate K/m T0O = sea level standard temp’
return 288.15 — (0.0065 * meters)

def tempAtAltitudeC (meters):

return k2c(tempAtAltitudeSI(meters))

def pressureAtAltitude (meters):
returns SI units in Pa
L = 0.0065 #K/m
g = 9.80665 #m/s 2
p0 = 101325 # Pa
h = meters #m
M = 0.0289644 # kg/mol
TO = 288.15 # K
R = 8.31447 # J/(molxK)

return p0 / (math.pow((1 — ((L = h) / T0)), ((gx M) / (R x L))
))

def densityAtAltitudeMeters (meters):
returns SI units of kg/m”3

p = pressureAtAltitude (meters)

UNCLASSIFIED

NEURAL NETWORK

r = 287.058
temp = tempAtAltitudeSI(meters)

return (p / (r * temp))

class DragPoint:

def init
self .x

self .y

dragPoints

(self |, x =

= X

=Y

[DragPoint
DragPoint
DragPoint
DragPoint
DragPoint
DragPoint
DragPoint

DragPoint

DragPoint
DragPoint
DragPoint
DragPoint
DragPoint
DragPoint
DragPoint

(
(
(
(
(
(
(
(
DragPoint (
(
(
(
(
(
(
(
(

DragPoint

0.0, y

—1000
.01

o o o o O
(0¢]

.95

1.35

1.75

’

UNCLASSIFIED

16

NEURAL NETWORK

DragPoint (5.0 , 0.185)]

def interp(a, b, frac):
points A and B, frac between 0 and 1
nx = a.x+(b.x—a.x)xfrac
ny = a.y+(b.y—a.y)xfrac

return DragPoint(nx, ny)

def interpolate (imputmach):
returns drag coefficient
arrayLength = len(dragPoints)
if imputmach <= dragPoints [0].x:
return dragPoints[0].y
if imputmach >= dragPoints|[arrayLength — 1].x:

return dragPoints[arrayLength — 1].y

for i in range(arrayLength):
x1 = dragPoints[i].x

x2 = dragPoints[i+1].x

if imputmach = x1
return dragPoints[i].y
if imputmach =— x2
return dragPoints[i + 1].y

if (imputmach < x2) and (imputmach > x1):

UNCLASSIFIED

NEURAL NETWORK

distance = x2 — x1
percent = (imputmach — x1) / distance
out = interp (dragPoints[i]|, dragPoints[i+1], percent)

return out.y

def interpDrag(mach):

return interpolate (mach)

def speedOfSound(c):
returns speed of sound in m/s

return 331.3 4+ (0.606 =* c)

def knots2mach (knots, c¢):
takes knots/second and converts to mach, returns mach

return (knots / (meters2knots ((speedOfSound(c)))))

def dragEquation(density , velocity , coeff):
return 0.5 x density % (velocity x velocity) x projArea x

coeff

def bulletDrag(alt, velocity):

"takes feet/sec and feet alt, returns drag force'

UNCLASSIFIED

18

NEURAL NETWORK

def

metersAlt = feet2meters(alt)
density = densityAtAltitudeMeters(metersAlt)
vel = feet2meters(velocity)

temp = tempAtAltitudeC (metersAlt)

return dragEquation(density , vel, (interpDrag(knots2mach (

feet2knot (velocity), temp))))

bulletDecelleration (feetAlt , FPSofBullet):
return meters2feet ((bulletDrag(feetAlt , FPSofBullet)) /
15.01163948515)

Bullet Construction and Manipulation

def

setLagAndDepression(lag, depression):

x = vec (1.0, 0.0, 0.0)

y = vec (0.0, 1.0, 0.0)

z = vec(0.0, 0.0, 1.0)

vecLeft = vec(—1.0, 0.0, 0.0)

vecLeftWithLag = vecLeft.clone().rotateZ(mil2rad(lag))

vecWithDep = vecLeftWithLag. clone () .rotateY (mil2rad (
depression))

vecWithNoseUp = vecWithDep. clone () .rotateX(deg2rad(3.0))

vecWithYaw = vecWithNoseUp. clone () .rotateZ (deg2rad(0.0))

return vecWithYaw

UNCLASSIFIED

19

NEURAL NETWORK 20

def

def

addBankToGunAngle (bank, gpv):
gpv is a Vector3d

return gpv.clone () .rotateY (deg2rad(bank))

rotateToAcHeading (heading , gunVec):
z = vec (0.0, 0.0, 1.0)

headingAngleWithoutZ = heading.clone () .setZ(0).unit ()
headingAngle = headingAngleWithoutZ.angleTo(vec(1,0,0))
if headingAngleWithoutZ.y < 0:
headingAngle = ((deg2rad(180) — headingAngle) + deg2rad
(180))

gunWithoutZ = gunVec.clone () .setZ (0).unit ()
gunAngle = gunWithoutZ.angleTo (vec(1,0,0))
if gunWithoutZ.y < 0:
gunAngle = ((deg2rad(180) — gunAngle) + deg2rad(180))
gunVecRot = gunVec. clone () .rotateZ (deg2rad(180))
gunVecRot2 = gunVecRot.clone () .rotateZ((headingAngle +
deg2rad (90)))

return gunVecRot2

class Bullet:

def init (self):

UNCLASSIFIED

NEURAL NETWORK 21

self .gpvWithBank = 0
self.position = 0
self.oldPosition = 0
self .velocity = 0
self.decelVec = 0
self .mach = 0

self.velocityAC = 0

def str (self):

return self.toString ()

def toString(self):

return ("gpvWithBank: ' + str(self.gpvWithBank) + "\n" +
"position: " + str(self.position) + "\n" +

"oldPosition: " + str(self.oldPosition) + "\n" +

r

"velocity rio" + self .velocity) + "\n" +

str(

"decelVec: . ." + str(self.decelVec) + "\n" +
"mach: 000" + str(self .mach) + "\n" +
(

"VelocityAC: ;" 4 str(self.velocityAC) + "\n")

def bulletMaker (heading, distance, y, height, lag, depression,
TAS, bank):
position = vec(distance, y, height)

gunVecNoHeading = setLagAndDepression(lag, depression)

UNCLASSIFIED

NEURAL NETWORK 22

def

def

def

gpvWithBank = addBankToGunAngle(bank, gunVecNoHeading)
gunVec = rotateToAcHeading (heading , gpvWithBank)
vectorl = gunVec.clone (). multiplyScalar (initall05Velocity)

vector2 = heading.clone (). multiplyScalar (knot2feet (kph2kps(TAS

)))

velocity = vectorl.clone().add(vector2)

bul = Bullet ()

bul.gpvWithBank = gunVec
bul. position = position
bul.velocity = velocity
bul.velocityAC = vector2

return bul

velocity (vel , acc, sec):

return vel + (acc x sec)

displacementTime (x0, v0, a, t):

return x0 + (v0 * t) + (0.5 % a * (t % t))

changeBulletFirst (bul, sec, windSpeed, windDir):

windFPS = knot2feet (windSpeed) /3600 * sec

UNCLASSIFIED

NEURAL NETWORK 23

class WindVec:
def init__ (self):
self .x = math.sin(deg2rad(—windDir)) * windFPS
self .y = —math. cos(deg2rad(—windDir)) * windFPS

windVec = WindVec ()

pos = bul.position
x0 = pos.x
y0 = pos.y
z0 = pos.z
vel = bul.velocity
vx0 = vel .x
vy0 = vel.y
vz0) = vel.z

decellScaler = bulletDecelleration (z0 , vel.length())
decellVec = bul.gpvWithBank. clone () .negate (). multiplyScalar (
decellScaler)

vx = velocity (vx0, decellVec.x, sec)
vy = velocity (vy0, decellVec.y, sec)

vz = velocity (vz0, (decellVec.z + —32.2), sec)

newPositionX = displacementTime (x0, (vx0+vx) /2.0, decellVec.x,

sec) + windVec.x

UNCLASSIFIED

NEURAL NETWORK

def

24

newPositionY = displacementTime(y0, (vyO+vy) /2.0, decellVec.y,

sec) + windVec.y

newPositionZ = displacementTime (z0, (vz0+vz) /2.0, (decellVec.z

+ —32.2), sec)

newBullet = Bullet ()

newBullet . oldPosition = bul. position

newBullet . gpvWithBank = bul.gpvWithBank

newBullet .mach = knots2mach(feet2knot (vel.length()),
tempAtAltitudeC (newPositionZ))

newBullet . decelVec = decellVec

newBullet . position = vec(newPositionX , newPositionY ,
newPositionZ)

newBullet . velocity = vec(vx, vy, vz)

newBullet . velocityAC = bul.velocityAC

return newBullet

changeBulletRest (bul, sec, windSpeed, windDir):
windFPS = knot2feet (windSpeed) /3600 * sec

class WindVec:
def _ init__ (self):
self .x = math.sin(deg2rad(—windDir)) * windFPS
self .y = —math.cos(deg2rad(—windDir)) * windFPS

windVec = WindVec ()

UNCLASSIFIED

NEURAL NETWORK

pos = bul. position

x0 = pos.x

y0 = pos.y

z0 = pos.z

newDirection = bul.position.clone().sub(bul.oldPosition).unit

0

vel = bul.velocity
vx() = vel.x
vy0 = vel.y
vz0) = vel.z

decellScaler = bulletDecelleration(z0 , vel.length())
if decellScaler < 0
decellScaler = —decellScaler
decellVec = newDirection.clone ().negate (). multiplyScaler (

decellScaler)

else:
decellVec = newDirection. clone (). multiplyScalar (
decellScaler)
vx = velocity (vx0, decellVec.x, sec)

vy = velocity (vy0, decellVec.y, sec)

vz = velocity (vz0, (decellVec.z + —32.2) | sec)

UNCLASSIFIED

25

NEURAL NETWORK 26

newPositionX = displacementTime (x0, (vx04+vx) /2.0, decellVec.x,
sec) + windVec.x

newPositionY = displacementTime (y0, (vyO+vy) /2.0, decellVec.y,
sec) + windVec.y

newPositionZ = displacementTime (z0, (vz0+vz) /2.0, (decellVec.z

+ —32.2), sec)

newBullet = Bullet ()

newBullet . oldPosition = bul.position

newBullet . gpvWithBank = bul.gpvWithBank

newBullet .mach = knots2mach (feet2knot (vel.length()),
tempAtAltitudeC (newPositionZ))

newBullet . decelVec = decellVec

newBullet . position = vec(newPositionX , newPositionY ,
newPositionZ)

newBullet . velocity = vec(vx, vy, vz)

return newBullet

def createBulletPathArray (heading, distance, y, height, lag,
depression , TAS, bank, windSpeed, windDir):
firstBul = bulletMaker (heading , distance, y, height, —lag,
depression , TAS, bank)
secondBul = changeBulletFirst (firstBul, 0.1, windSpeed,
windDir)
bulletContainer = []

bulletContainer.append (firstBul)

UNCLASSIFIED

NEURAL NETWORK

bulletContainer.append (secondBul)

currentLocation = 2
while True:
newBullet = changeBulletRest (bulletContainer |
currentLocation —1], 0.1, windSpeed, windDir)
bulletContainer.append(newBullet)
currentLocation = currentLocation + 1

if ((bulletContainer [currentLocation —1]).position).z < 0.

break

return bulletContainer

def calclmpactPoint (bulletContainer):
numberOfLines = len(bulletContainer)
lastPoint = bulletContainer [numberOfLines — 1].position
secondLastPoint = bulletContainer [numberOfLines — 2]. position
lineVec = lastPoint.clone().sub(secondLastPoint)
x = —secondLastPoint.z / lineVec.unit().z
impact = secondLastPoint.clone ().add(lineVec.unit ().

multiplyScalar(x))

return impact

def plotBulletArray (bc):

x =[]

UNCLASSIFIED

27

0

NEURAL NETWORK

for p in bec:

x.append(p. position .x)

y.append(p. position .y)

z.append (p. position.z)

impact = calcIlmpactPoint (bc)

fig = plt.figure()

ax = fig.add_ subplot (111, projection="3d")

ax.scatter (x, vy,

ax.scatter (impact.x, impact.y, impact.z, c=’b’, marker="x")

ax. quiver ([be [0].
[be[0].
[be[0].
[be[0].
[be[0].
[be[0].

length

9

z, c="r’, marker="0")

position.x, bc[0]. position.x],
position.y, bc[0]. position.y],
position.z, bc[0]. position.z],
gpvWithBank.x, bc[0]. velocityAC .x],
gpvWithBank .y, bc[0]. velocityAC .y],
gpvWithBank.z, bc[0]. velocityAC.z],

= 100, pivot = "tail’)

plt.autoscale (False)

plt .show ()

UNCLASSIFIED

28

NEURAL NETWORK

Appendix C

Neural Network Code

import FireControl as fc
import math

from scipy import optimize
from random import randint

import tensorflow as tf

heading , distance, y, height,
windSpeed , windDir

heading = fc.vec(0,1,0)

distance = 7179

y =10

height = 9000

lag = —222
dep = —411
tas = 190
bank = —24

windSpeed = 0
windDir = 0

lagMax = 12.0

lagMin = —392.0
depMax = —314.0
depMin = —628.0

lag , depression ,

UNCLASSIFIED

TAS, bank,

29

NEURAL NETWORK 30

bulletArray = fc.createBulletPathArray (heading, distance, y,
height ,
lag , dep, tas, bank,

windSpeed , windDir)

impactPoint = fc.calcImpactPoint (bulletArray)

def fBoth(input):

ba = fc.createBulletPathArray (heading, distance, y, height,

input [0] , input[1], tas, bank,

windSpeed , windDir)

impact = fc.calclmpactPoint (ba)

return [impact.x, impact.y]

lagFix , depFix = optimize.fsolve (fBoth, x0=[lag, dep])

ecachMovementOfPlane = []

lagUsed = []
depUsed = []

lagDiff = []
depDiff = []

UNCLASSIFIED

NEURAL NETWORK

impactPoints = []
impactX = []

impactY = []

timeStep = []

for i in range(0, 1000, 1):

I1Diff = randint(—20, 20)

dDiff = randint(—20, 20)

bulletArray = fc.createBulletPathArray (heading, distance, y,

height ,
lagFix + 1Diff | depFix

+ dDiff , tas, bank,
windSpeed , windDir)

eachMovementOfPlane . append (bulletArray)

lagUsed . append (lagFix + 1Diff)

depUsed .append (depFix + dDiff)

lagDiff.append (1Diff)

depDiff.append (dDiff)

timeStep .append (i)

impactPoints.append(fc.calcImpactPoint (bulletArray))

impactX.append (impactPoints[i].x)

impactY . append (impactPoints [i].y)

UNCLASSIFIED

31

NEURAL NETWORK

def scaleArrayDown(x):
newX = []
for element in x:
newX.append ((element — min(x)) / (max(x) — min(x)))

return newX

def scaleBetween (unscaledNum, minDomain, maxDomain, minRange,
maxRange) :
return (maxDomain — minDomain) * (unscaledNum — minRange) / (

maxRange — minRange) + minDomain

def scale(x, minDomain, maxDomain, minRange, maxRange) :
newX = []
for element in x:
newX . append (scaleBetween (element ,minDomain, maxDomain,
minRange , maxRange))

return newX

This will be the input wvectors to the neural net
scaledLagUsed = scale(lagUsed, 0.0, 1.0, lagMin, lagMax)
scaledDepUsed = scale(depUsed, 0.0, 1.0, depMin, depMax)

These will be the correct output wvectors

scaledLagDiff = scale(lagDiff, 0.0, 1.0, —20.0, 20.0)

UNCLASSIFIED

32

NEURAL NETWORK 33

scaledDepDiff = scale(depDiff, 0.0, 1.0, —20.0, 20.0)

trainLag = scaledLagUsed[100:len (scaledLagUsed)]
testLag = scaledLagUsed [0:100]

trainDep = scaledDepUsed [100:1en (scaledDepUsed) |
testDep = scaledDepUsed [0:100]

trainLagDiff = scaledLagDiff[100:len(scaledLagDiff)]
testLagDiff = scaledLagDiff[0:100]

trainDepDiff = scaledDepDiff[100:len(scaledDepDiff)]
testDepDiff = scaledDepDiff [0:100]

inputData = []
outputData = []
testInput = []

testOutput = []

for i in range(0, len(testLag), 1):
testInput .append ([testLag[i], testDep[i]])
testOutput.append ([testLagDiff[i], testDepDiff[i]])

for i in range(0, len(trainLag), 1):

inputData.append ([trainLag[i], trainDep[i]])

outputData.append ([trainLagDiff[i], trainDepDiff[i]])

UNCLASSIFIED

NEURAL NETWORK

Parameters

learning rate = 0.001
training_epochs = 5000
batch size = 100

display_step =1

Network Parameters

n_hidden 1 = 256 # 1st

34

layer number of features

n_hidden_ 2 = 256 # 2nd layer number of features

n_input = 2 # Lag and Depression

n_output = 2 # Lag correction , depression correction

tf Graph input

x = tf.placeholder (" float", [None, n_input])

y = tf.placeholder (" float", [None, n_output])

Create model

def multilayer_perceptron(x, weights, biases):

Hidden layer with tanh activation

layer 1 = tf.add(tf.matmul(x, weights[’hl’]), biases[’bl’])

layer 1 = tf.nn.tanh(layer 1)

Hidden layer with tanH activation

layer 2 = tf.add(tf.matmul(layer_ 1, weights[’h2’]), biases][b2

1)

layer 2 = tf.nn.tanh(layer 2)

QOutput layer with linear activation

UNCLASSIFIED

NEURAL NETWORK 35

out_layer = tf.matmul(layer 2, weights[’out’]) + biases[out’]

return out_layer

Store layers weight & bias

weights = {
'h1’: tf.Variable(tf.random normal([n input, n hidden 1])),
'h2’: tf.Variable(tf.random_normal ([n_hidden 1, n_hidden_ 2])),
"out ’: tf.Variable(tf.random_normal ([n_hidden_2, n_output]))

}

biases = {
'b17: tf.Variable(tf.random normal([n hidden 1])),
'b27: tf.Variable(tf.random_normal ([n_hidden_2])),

‘out ': tf.Variable(tf.random_normal ([n_output]))

Construct model

pred = multilayer perceptron(x, weights, biases)

Define loss and optimizer
cost = tf.reduce_mean(tf.abs(tf.square(tf.sub(pred , y))))
optimizer = tf.train.GradientDescentOptimizer (learning_ rate=

learning rate).minimize (cost)

Initializing the wvariables

init = tf.initialize all_ variables ()

Launch the graph

UNCLASSIFIED

NEURAL NETWORK 36

sess = tf.InteractiveSession ()

sess.run(init)

def predict(x, prediction):
print "Predicted: ", [scaleBetween(prediction[0][0], —20.0,
20.0, 0.0, 1.0),
scaleBetween (prediction [0][1], —20.0,
20.0, 0.0, 1.0)]
print "Actual ,:", [scaleBetween (testOutput|[x][0], —20.0,
20.0, 0.0, 1.0),
scaleBetween (testOutput [x][1], —20.0,
20.0, 0.0, 1.0)]

Training cycle
for epoch in range(training epochs):
avg_cost = 0.
total _batch = int (len(inputData)/batch_size)
Loop over all batches
for i in range(total batch):
batch x = inputData[ixtotal batch:ixtotal batch+batch_size
)
batch_y = outputData[ixtotal batch:ixtotal batch+
batch_size |
Run optimization op (backprop) and cost op (to get loss

value)

UNCLASSIFIED

NEURAL NETWORK 37

, ¢ = sess.run([optimizer , cost]|, feed dict={x: batch x,
y: batch_y})
print c
Compute average loss
avg_cost += ¢ / total_ batch
Display logs per epoch step
if epoch % display_ step = 0:
print "Epoch:"', ’%04d’ % (epoch+1), "cost=", \
"{:.9f}" . format(avg_cost)

print "Optimization Finished!"

Test model
correct prediction = tf.equal(tf.argmax(pred, 1), tf.argmax(y, 1))

print sess.run(cost, feed dict={x: [testInput[1l]] , y: [testOutput

[11]})

Calculate accuracy
accuracy = tf.reduce_mean(tf.cast(correct prediction, "float"))

print "Accuracy:', accuracy.eval({x: testInput, y: testOutput})

print "Predicted: " , pred.eval(feed dict={x: [testInput[1]]})

print "Actual ;" , testOutput[1]

UNCLASSIFIED

